References

BANDURKIN, G. A. & DZHURINSKII, B. F. (1973). Zh. Strukt. Khim. 14, 306–312.

BRUZZONE, G. & MERLO, F. (1982). J. Less-Common Met. 85, 285-306.

BRUZZONE, G. & RUGGIERO, A. F. (1964). J. Less-Common Met. 7, 368-372.

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KRIPYAKEVICH, P. I. (1977). Structure Types of Intermetallic Compounds, pp. 100-103. Moscow: Nauka (in Russian).
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PARTHÉ, E. & CHABOT, B. (1984). Handbook on the Physics and Chemistry of Rare Earths, Vol. 6, edited by K. A. GSCHNEIDNER JR & L. EYRING, ch. 48, pp. 113-334. Amsterdam: Elsevier.
- ROBERTSON, B. E. (1977). Inorg. Chem. 16, 2735-2742.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- VILLARS, P. & CALVERT, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1. Metals Park, Ohio: American Society for Metals.

Acta Cryst. (1987). C43, 616-618

Structure du Molybdophosphate d'Yttrium et Sodium $Na_2Y(MoO_4)(PO_4)$

PAR M. BEN AMARA

Faculté de Medecine Dentaire, 5000 Monastir, Tunisie

et M. Dabbabi

Faculté de Sciences et Techniques, 5000 Monastir, Tunisie

(Reçu le 20 mai 1986, accepté le 17 novembre 1986)

Abstract. $M_r = 389 \cdot 79$, monoclinic, C2/c, $a = 13 \cdot 928$ (11), $b = 18 \cdot 016$ (10), $c = 6 \cdot 847$ (6) Å, $\beta = 119 \cdot 62$ (6)°, V = 1494 (4) Å³, Z = 8, $D_m = 3 \cdot 44$ (5), $D_x = 3 \cdot 467$ Mg m⁻³, λ (Mo $K\bar{\alpha}) = 0 \cdot 7107$ Å, $\mu = 9 \cdot 75$ mm⁻¹, F(000) = 1456, T = 293 K, final R = 0.041 for 2158 independent reflexions with $I > 3\sigma(I)$. The three-dimensional framework is made up of chains of edge-sharing YO₈ polyhedra linked by isolated MoO₄ and PO₄ tetrahedra. This framework leaves voids in which the Na atoms are inserted. The Na atoms are sixfold coordinated if distances less than $3 \cdot 0$ Å are considered.

Introduction. Les luminophores à base de terres rares sont des matériaux soit stoechiométriques: NdP_5O_{14} (Weber, Damen, Danielmeyer & Tofield, 1973) soit constitués d'un réseau-hôte dopé par des ions actifs tels que le YAG: $Y_3Al_5O_{12}$:Nd³⁺ (Danielmeyer, Blätte & Balmer, 1973).

La présence dans ces matériaux, de groupements tétraédriques isolés (phosphates, vanadates) peut être un facteur favorable à la réalisation de luminophores performants par exemple Na₃La(PO₄)₂:Ce,Tb (Parent, Fava, Salmon, Le Flem & Hagenmuller, 1980).

Dans le système Na_2MoO_4 -YPO₄ nous avons mis en évidence une nouvelle phase $Na_2Y(MoO_4)(PO_4)$ offrant un réseau-hôte aux ions actifs. La connaissance de la structure cristalline de cette phase est nécessaire à une étude ultérieure de ses propriétés luminescentes. Des monocristaux ont été préparés par action d'un mélange stoechiométrique de $(NH_4)_2HPO_4$ et Y_2O_3 sur un excès de Na_2MoO_4 utilisé comme flux. Après un premier traitement de 15 h à 673 K, le mélange est porté dans un creuset de platine pendant 4 h à 1023 K puis refroidi jusqu'à la température ambiante à la vitesse de 10 K h⁻¹.

Partie expérimentale. Parallélépipède $(0.07 \times 0.13 \times 0.13)$ 0,26 mm). D_m par picnomètrie, diffractomètre Philips PW 1100. Monochromateur: graphite. Paramètres cristallins affinés à partir de 25 réflexions (17 < $2\theta < 25^{\circ}$). Domaine de mesure: 3-45° (θ), type de balayage: ω , domaine de balayage: (1,20 + $0,20 \tan \theta$)°, vitesse de balayage: $0,03^{\circ} \text{ s}^{-1}$. Trois réflexions de référence: 221, 421 et 282, variation négligeable. Nombre de réflexions mesurées: 4681 $(h-24\rightarrow 24, k-35\rightarrow 35, l0\rightarrow 11)$. 2363 réflexions indépendantes, $R_{int} = 0,042$. Les intensités sont corrigées de Lorentz-polarisation et de l'absorption après indexation des faces, facteurs de transmission: 0,2226-0,6130. 205 réflexions ont été éliminées correspondant à $I < 3\sigma(I)$. La structure a été résolue en exploitant la fonction de Patterson et les synthèses de Fourier. L'affinement sur F (matrice complète), utilisant les facteurs thermiques anisotropes, a conduit à R = 0.041, wR = 0.049, S = 5.417. Un schéma de pondération unitaire a été utilisé. $(\Delta/\sigma)_{max} = 0.00$, $\Delta\rho_{max} = 1.37$ e Å⁻³. Facteurs de diffusion atomique et valeurs de

© 1987 International Union of Crystallography

FORNASINI, M. L. & PANI, M. (1986). Acta Cryst. C42, 394-396.

f' et f'' sont ceux des International Tables for X-ray Crystallography (1974). Les programmes SDP (Enraf-Nonius, 1980) ont été utilisés. Les calculs ont été effectués sur ordinateur PDP 11-34.

Tableau 1. Coordonnées atomiques finales et facteurs thermiques B_{eq} avec écarts-type entre parenthèses

$$B_{\rm \acute{eq}} = \frac{4}{3} \sum_{l} \sum_{j} \beta_{ij} a_i^* a_j^*.$$

	x	у	Ζ	$B_{\acute{e}a}(\dot{A}^2)$
Na(1)	0.1875 (4)	0.5974 (2)	0,4522 (7)	3,17 (9)
Na(2)	0,1877 (4)	0,0974 (3)	0,4232 (7)	3,34 (9)
Y	0.07186 (4)	0,74995 (4)	0,07188 (8)	0,538 (6)
Mo(1)	0,00	0,42833 (5)	0,25	1,29 (1)
Mo(2)	0.00	0,92823 (5)	0,25	1,29 (1)
P	0,1811(1)	0,2500(1)	0,1815 (2)	0,64 (2)
0(1)	0.0242 (5)	0,3713 (3)	0,4837 (9)	1,6 (1)
O (2)	0,1177 (6)	0,4815 (5)	0,325 (1)	3,2 (2)
O (3)	0.0236 (4)	0,8721 (3)	0,0639 (9)	1,7 (1)
O(4)	0,1171 (6)	0,9822 (4)	0,410(1)	3,0 (1)
O (5)	0,2560 (3)	0,1817 (3)	0,2411 (7)	0,85 (6)
O(6)	0,2568 (4)	0,3186 (3)	0,2722 (7)	0,80 (6)
$\dot{\mathbf{O}(7)}$	0,1022 (3)	0,2415 (3)	0,2778 (6)	0,94 (7)
Ō(8)	0,1019 (3)	0,2583 (3)	0,9270 (6)	0,83 (7)

Tableau 2. Distances interatomiques (Å) et angles (°)

Tétraèdre PC) ₄				
Р	O(5)	O(6)	O(7)		O(8)
O(5)	1.533 (4)	2,474 (3)	2,520 (4)		2,563 (5)
$\tilde{O}(\tilde{6})$ -	107.2(1)	1,540 (3)	2,577 (4)		2,526 (4)
O(7)	110.0 (2)	113.4 (2)	1,544 (2)		2,418 (3)
O(8)	113.0 (2)	110.1 (2)	103,3 (1)	-	1,541 (2)
0(0)	,. ()			-	
Tétraèdres M	1oO₄				0 (2)
Mo(1)	O(1)	O(1)	O(2)		O(2)
O(1)	1,788 (3)	2,927 (6)	2,870 (5)		2,860 (4)
O(1)	109,9 (2)	1,788 (3)	2,860 (4)		2,8 /0 (5)
O(2)	108,7 (2)	108,2 (2)	1,744 (3)	_	2,913 (8)
O(2)	108,2 (2)	108,7 (2)	113,3 (3)	-	1,744 (3)
$M_{O}(2)$	0(3)	0(3)	O(4)		O(4)
$\Omega(3)$	1 780 (3)	2.930 (6)	2.864 (4)		2.855 (4)
O(3)	1108 (2)	1,780(3)	2,855 (4)		2.864 (4)
O(3)	10,0(2)	108 2 (2)	1744(3)		2,896 (8)
O(4)	100,7(2) 108,7(2)	108, 7(2)	1122(3)	-	1.744 (3)
D-l-1-1 dres N	100,2 (2)	100,7 (2)	112,2 (0)	-	
Polyedres IN	aU ₆	NI (2)	0(2)	2 700	(6)
Na(1) - O(1)	2,927 (4)	Na(2)-	-O(2)	2,780	(0)
Na(1) - O(2)	2,287 (4)	Na(2)-	-0(3)	2,937	(4)
Na(1) - O(4)	2,796 (5)	Na(2)-	-0(4)	2,280	(4)
Na(1) - O(5)	2,389 (4)	Na(2)-	-0(5)	2,431	(4)
Na(1) - O(6)	2,436 (3)	Na(2)-	-0(6)	2,375	(4)
Na(1) - O(8)	2,830 (3)	Na(2)-	-0(7)	2,824	(4)
Polyèdre YC) ₈				
Y-O(1)	2,276 (3)	Y-O(7	7)	2,428	(2)
Y-O(3)	2,293 (3)	Y-0(7	7)	2,257	(2)
Y-O(5)	2,421 (4)	Y–O(8	3)	2,428	(2)
Y-O(6)	2,418 (4)	Y-O(8	3)	2,260	(2)
Distances ca	ation-cation				
Na(1)-Na(1)	4,544 (5)	Na(2)-	-Na(2)	4,550	(5)
Na(1)-Na(2)	3,737 (3)	Na(2)-	-Y	3,581	(3)
Na(1) - Y	3,575 (3)	Na(2)-	-Mo(1)	3,811	(3)
Na(1) - Mo(1)) 3,801 (2)	Na(2)-	-Mo(2)	3,804	(2)
Na(1)-Mo(2) 3,814 (3)	Na(2)-	-P	3,187	(3)
Y-Y	3.836 (0)	Mo(1)	Mo(1)	4,288	(1)
Y = Mo(1)	3,741 (0)	Mo(1)	-Mo(2)	6,582	(0)
Y - Mo(2)	3,743 (0)	Mo(1)	- P	4,251	(1)
Y-P	2,991 (1)	- ()			
	-,- (-)	Mo(2)	Mo(2)	4,290)(1)
		Mo(2)	- P	4,247	(1)
		P-P		3,799) (1)

Discussion. Les coordonnées atomiques finales sont regroupées dans le Tableau 1.* La Fig. 1 représente la projection de la structure sur le plan *ac*. La moyenne des distances $\langle P-O \rangle$ dans le tétraèdre PO₄ est 1,540 Å et celle des angles est 109,5° (Tableau 2). Elles sont en bon accord avec celles rencontrées dans les monophosphates (Ben Amara, Vlasse, Le Flem & Hagenmuller, 1983). Dans les tétraèdres MoO₄ les distances moyennes $\langle Mo-O \rangle$ sont 1,766 et 1,762 Å et les moyennes des angles sont de 109,5°. Si on se limite à des distances inférieures à 3 Å chaque sodium est entouré par six atomes d'oxygène. Dans les polyèdres YO₈ les distances Y-O sont comprises entre 2,257 et 2,428 Å. Ces polyèdres partagent une arête et se développent en une chaîne selon l'axe c (Fig. 2). La

* Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 43574: 19 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Projection de la structure de $Na_2Y(MoO_4)(PO_4)$ sur le plan (010).

Fig. 2. (a) Environnement de Y dans la structure de Na₂-Y(MoO₄)(PO₄); (b) enchaînement des polyèdres YO₈ selon la direction [001].

Références

BEN AMARA, M., VLASSE, M., LE FLEM, G. & HAGENMULLER, P. (1983). Acta Cryst. C39, 1483–1485.

- DANIELMEYER, H. G., BLÄTTE, M. & BALMER, P. (1973). Appl. Phys. 1, 269.
- Enraf-Nonius (1980). Structure Determination Package. Enraf-Nonius, Delft.

International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)

PARENT, C., FAVA, J., SALMON, R., LE FLEM, G. & HAGENMULLER, P. (1980). Solid State Commun. 35(5), 393.

WEBER, H. P., DAMEN, T. C., DANIELMEYER, H. G. & TOFIELD, B. C. (1973). Appl. Phys. Lett. 22, 534.

An irregular crystal (approximated to an eight-

faceted block showing $\{011\}, \{01\overline{1}\}, \{100\}, \{110\},$

 $\{\overline{2}\overline{1}0\}, \{2\overline{1}0\}$ and with approximate dimensions 0.24×10^{-1}

 0.16×0.14 mm) was transferred under vacuum into a

Pyrex capillary and sealed. The crystal was aligned

about the b axis on a Stoe Stadi-2 Weissenberg

diffractometer. Cell parameters were obtained by least-squares refinement of 28 h0l reflection 2θ values,

 $48 < 2\theta < 56^{\circ}$, which in turn were obtained by profile

fitting well-resolved α_1 , α_2 step-scan data in the $\theta - 2\theta$ mode (a,c); b was obtained from 0k0 reflection

measurements. A total of 604 reflections with 7 <

 $2\theta < 54^{\circ}$ from layers k = 0-8 were measured by a

variable ω scan with $\Delta \omega = (1.4 + 0.3 \sin \mu \cot Y)^{\circ}$ and a

42 s scan with two 10 s background measurements. No

significant deterioration of the crystal was observed.

Corrections for Lorentz, polarization and absorption

(max. and min. transmission 37.6, 17.1%) were

applied. The structure was solved by Patterson and

difference Fourier syntheses. Final cycles of full-matrix least-squares refinement included anisotropic thermal

parameters for all atoms.* The final difference Fourier

map was featureless apart from ripples $< 1.2 \text{ e} \text{ Å}^{-3}$ near

the Ag and As atoms. Final R = 0.032, wR = 0.033,

Acta Cryst. (1987). C43, 618-620

Structure of the 1:1 Silver(II) Fluoride-Arsenic(V) Fluoride Adduct, AgF₂.AsF₅

BY D. GANTAR AND B. FRLEC

Jožef Stefan Institute, Edvard Kardelj University, 61001 Ljubljana, Yugoslavia

AND D. R. RUSSELL AND J. H. HOLLOWAY

Chemistry Department, The University, Leicester LE1 7RH, England

(Received 26 September 1986; accepted 11 December 1986)

Abstract. $M_r = 315 \cdot 8$, orthorhombic, *Pnma*, a = 7.585(1), b = 6.997(6), c = 9.852(1) Å, $V = 522 \cdot 9$ Å³, Z = 4, $D_x = 4.01$ g cm⁻³, λ (Mo Ka) = 0.7107 Å, $\mu = 97.3$ cm⁻¹, F(000) = 572, T = 293 K, final R = 0.032, wR = 0.033 for 520 unique observed reflections $[I > 3\sigma(I)]$. The structure consists of an extended F-bridged $[\text{AgF}]_n^{n+}$ chain with Ag–F distances 1.995 (5), 2.004 (5) Å, linked to $[\text{AsF}_6]^-$ anions by longer Ag–F distances in the range 2.394–2.439 (6) Å.

Introduction. A number of hexafluoroarsenates of the type MF_2 .AsF₅ have been prepared (Birchall, Dean & Gillespie, 1971; Dean, 1975; Golič & Leban, 1977; Frlec, Gantar & Holloway, 1982) and a structural investigation of the tin compound has been carried out (Golič & Leban, 1977). X-ray powder photography for the series of adducts has shown that none of them is isostructural. However, the single-crystal work on SnF_2 .AsF₅ showed that the adduct contains cyclic $[(Sn-F)_3]^{3+}$ cations of D_{3h} symmetry and $[AsF_6]^-$ anions. The only previous structural information for AgF_2 .AsF₅ has come from Raman spectroscopy which indicated that the solid contains $[AsF_6]^-$ octahedra of C_{4v} symmetry or less.

The synthesis of the blue solid has been described elsewhere (Frlec, Gantar & Holloway, 1982).

Experimental. Single crystals of the solid were grown from anhydrous HF solution in FEP–Teflon (per-fluoropropene–tetrafluoroethylene copolymer) tubes.

Birmingham: Dordrecht.)

MOLYBDOPHOSPHATE D'YTTRIUM ET SODIUM